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Abstract—Graph-based clustering aims to partition the data
according to a similarity graph, which has shown impressive
performance on various kinds of tasks. The quality of similarity
graph largely determines the clustering results, but it is diffi-
cult to produce a high-quality one, especially when data contain
noises and outliers. To solve this problem, we propose a robust
rank constrained sparse learning (RRCSL) method in this article.
The L2,1-norm is adopted into the objective function of sparse
representation to learn the optimal graph with robustness. To
preserve the data structure, we construct an initial graph and
search the graph within its neighborhood. By incorporating a
rank constraint, the learned graph can be directly used as the
cluster indicator, and the final results are obtained without addi-
tional postprocessing. In addition, the proposed method cannot
only be applied to single-view clustering but also extended to
multiview clustering. Plenty of experiments on synthetic and real-
world datasets have demonstrated the superiority and robustness
of the proposed framework.

Index Terms—Graph clustering, graph learning, machine
learning, multiview clustering, sparse representation.

I. INTRODUCTION

CLUSTERING is a fundamental technique for process-
ing unlabeled data, which aims to partition the samples

into clusters. In this age of information, a large number of
unlabeled data show exponential growth [1]. Therefore, clus-
tering has become an active research area, and has been widely
used in various applications, such as gene expression analy-
sis, motion segmentation, document clustering, social media
analysis, and image segmentation [2], [3]. In the past few
decades, plenty of methods have been proposed toward this
topic [4], such as K-means, hierarchical clustering, subspace
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clustering, spectral clustering, and graph-based clustering [5]–
[8]. Some clustering methods based on deep learning also
obtain extensive attention [9], [10].

Among numerous clustering techniques, graph-based clus-
tering methods focus on the internal data structure, and have
shown better performance [11], [12]. Most of them construct
the similarity graph as the first step, and fix it during the
clustering stage. Therefore, the clustering performance relies
highly on the graph construction procedure. However, it is dif-
ficult to guarantee the graph quality. To alleviate this problem,
some methods update the graph during the clustering proce-
dure, such as clustering with adaptive neighbors (CANs) [13],
constrained Laplacian rank (CLR) [14], and simplex sparse
representation (SSR) [15]. However, they are susceptible to
noises and outliers. Moreover, most of the existing works
cannot obtain the clustering indicator intuitively, so they use
K-means or spectral clustering as the postprocessing, which
leads to the suboptimal result [16].

In addition, multiview clustering is a necessary and impor-
tant issue, since data are usually represented by different
views [17]–[19]. A variety of methods is proposed to fuse
the complementary information hidden in the views [20]–[25].
An intuitive way to make use of the information from each
view is combining all the feature vectors together. This strat-
egy ignores the diversity of different views and is often
affected severely when some views are confusing. Recently,
some methods try to learn the weight of each view automat-
ically [26]–[28]. But they treat the optimal graph as a linear
combination of graphs with different views, which restricts
the flexibility of the desired graph. Meanwhile, postprocess-
ing is necessary in most methods [29], [30], which degrades
clustering performance.

In this article, a robust rank constrained sparse learning
(RRCSL) method is proposed to solve the above-mentioned
problems. We combine the sparse representation with the L2,1-
norm to learn the desired graph, which also reduces the impact
of data noises and outliers. Furthermore, in order to pre-
serve the data relationship accurately, the desired graph is
searched within the initial graph’s neighborhood. To avoid
the shortcomings caused by two separate steps in most exist-
ing works, we introduce the Laplacian rank constraint, which
makes the learned graph have a clear structure. In this way,
data can be classified directly and, therefore, the quality and
efficiency of clustering have been improved. In addition, we
extend the RRCSL method to multiview clustering and make
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the weights of views adjusted adaptively. Instead of using the
linear combination of the graphs directly, the unified graph is
searched within its neighborhood such that the searching space
is extended.

In summary, the major contributions of this article are as
follows.

1) The sparse representation is combined with L2,1-norm,
which upgrades the construction quality of the graph
while reducing the impact of data noises and outliers.

2) The optimal similarity graph is searched within the
neighborhood of an predefined graph, which ensures
that the similarity graph reflects the accurate relationship
between the data.

3) The rank constraint is added into the proposed method
and makes the learned graph have a clear structure,
which avoids additional postprocessing.

4) The proposed RRCSL method is extended to multi-
view clustering and the weights of views are adjusted
adaptively, while the flexibility of the optimal graph is
improved.

II. SINGLE-VIEW CLUSTERING BY RRCSL METHOD

In this section, the sparse representation method is first
introduced as the preliminary knowledge. Then, the RRCSL
method and the corresponding optimization algorithm are
proposed.

A. Sparse Representation Revisited

There are many ways to construct a similarity graph by
given data, such as the k-nearest neighbor method (kNN) and
the Gaussian kernel function method. But the hyperparameter
in these methods is a deficiency because of its difficulty to
tune. The sparse representation can be applied to build a data
similarity graph without specifying parameters and improve
the quality of the graph. Suppose X = [x1, . . . , xn] ∈ R

d×n is
the data matrix with d features and n data points. X is dense
with lots of irrelevant and redundant data. In most cases, it
is necessary to convert X into an appropriate sparse matrix.
Suppose the new representation of X is y ∈ R

d×1, and the
sparse representation method computes a representation vector
α ∈ R

n×1 to satisfy y ≈ Xα. To seek a sparse solution, it is
natural to solve the following problem:

min
α

‖y − Xα‖2
2 + ω0‖α‖1. (1)

Based on (1), Huang et al. [15] proposed the SSR method.
According to SSR, αi ∈ R

(n−1)×1 is the similarity between
the ith sample and other samples, which can be represented
by the following objective function:

min
αi≥0

‖xi − X−iαi‖2
2 + ω0‖αi‖1 (2)

where X−i = [x1, . . . , xi−1, xi+1, . . . , xn] ∈ R
d×(n−1) is the

data matrix that removes column i. To obtain the shift invariant
similarities, it is necessary to constrain αT

i 1 = 1. In this way,
‖αi‖1 becomes constant, so (2) can be rewritten as

min
αi≥0,αT

i 1=1
‖xi − X−iαi‖2

2. (3)

Fig. 1. Example of multiple linear combinations.

Equation (3) is the objective function of the SSR method, and
it assumes that a data point can be approximated by the linear
combination of the other points such that a sparse data similar-
ity graph can be learned without prior analysis or parameter.
However, since (3) squares the residue errors, SSR is sensi-
tive to outliers and noise. Furthermore, there may be multiple
linear combinations of αi for the same set of xi and X−i.
To demonstrate this statement, a simple example is shown in
Fig. 1. When (3/5) is reconstructed from (1/5), (2/5), and
(4/5), there are two completely different linear combinations
of the coefficients. For the same sample, minimizing (3) leads
to multiple solutions. Therefore, the similarity graph may devi-
ate from the relationship of samples, which further produces
incorrect clustering results.

B. Robust Rank-Constrained Sparse Learning Method

In order to facilitate subsequent optimization, we rewrite (3)
into the matrix form

min
S

‖X − XS‖2
F

s.t. sij ≥ 0,
∑

j

sij = 1, diag(S) = 0 (4)

where S ∈ R
n×n is the desired graph. To solve the problem

of sensitivity to outliers and noises, we introduce the L2,1-
norm to replace the square of F-norm. The L2,1-norm shows
good performance in fields of feature selection and outlier
detection [31]–[33]. The objective function becomes

min
S

‖X − XS‖2,1

s.t. sij ≥ 0,
∑

j

sij = 1, diag(S) = 0. (5)

The L2,1-norm of the matrix M is defined as

‖M‖2,1 =
∑

i

√∑

j

∣∣mij
∣∣2 =

∑

i

∥∥mj
∥∥

2. (6)

Rather than pursuing the flat sparsity, the L2,1-norm ensures
the structural sparsity within the learned graph. In addition, for
any rotation matrix R, ‖MR‖2,1 = ‖M‖2,1 always holds, which
makes the model insensitive to feature rotation.

However, in (5), there are still multiple linear combinations
of S for the same X. To make the learned graph S reflect
the relationship of X, we propose to construct an initial graph
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TABLE I
ALGORITHM OF ALM METHOD TO SOLVE minh(X)=0 f (X)

and find the desired graph within its neighborhood. Thus, the
objective function turns out to be

min
S

‖X − XS‖2,1 + α‖S − B‖2
F

s.t. sij ≥ 0,
∑

j

sij = 1, diag(S) = 0 (7)

where B is the initial similarity graph, which can be gener-
ated by Nie et al. [14]. Although this simple initial graph has
low quality and poor clustering results will be obtained if it is
directly used for clustering. But to some extent, it can reflect
accurate relationships between the data. Equation (7) can make
the learned optimal similarity graph close to the initial simi-
larity graph. In this way, the similarity graph will only be the
one that fits the true relationship of the data in multiple linear
combinations, which ensures it well represented. It also makes
up for the shortcomings of sparse representation learning that
cannot grasp the local relationship.

In order to obtain the cluster indicator directly, we propose
to impose an additional constraint into the objective function,
which requires the following theorem.

Theorem 1 [34]: The multiplicity k of the eigenvalue zero
of the Laplacian matrix Ls is equal to the number of connected
components in the graph associated with S.

The Laplacian matrix is Ls = Ds − (ST + S)/2, where
Ds is the diagonal matrix and the ith diagonal element is∑

j (sij + sji)/2. Given the cluster number k, we can constrain
the rank of Ls to be n − k, so that the learned graph con-
tains exact k connected components. In this way, the clustering
result can be directly obtained according to the connection
relationship of the data points in the similarity graph [14].
Then, (7) becomes

min
S

‖X − XS‖2,1 + α‖S − B‖2
F

s.t. sij ≥ 0,
∑

j

sij = 1, diag(S) = 0, rank(Ls) = n − k. (8)

Besides, the constraint rank(Ls) = n − k is a complex non-
linear constraint. Equation (8) is difficult to solve. But it can be
equivalently converted into an easy-to-solve form by an effec-
tive method. Ls is known to be semidefinite, assuming σi(Ls)
is its ith smallest eigenvalue, and then σi(Ls) is non-negative.
When λ is large enough, (8) is equivalent to

min
S

‖X − XS‖2,1 + α‖S − B‖2
F + 2λ

k∑

i=1

σi(Ls)

s.t. sij ≥ 0,
∑

j

sij = 1, diag(S) = 0. (9)

With the method, the rank constraint is incorporated into (9)
as a regularizer. According to Fan [35]

k∑

i=1

σi(Ls) = min
F

Tr
(
FTLsF

)

s.t. F ∈ R
n× k, FTF = I (10)

where F ∈ R
n×k is an indicator matrix. Therefore, (9) is

equivalent to

min
S,F

‖X − XS‖2,1 + α‖S − B‖2
F + λTr

(
FTLsF

)

s.t. sij ≥ 0,
∑

j

sij = 1, diag(S) = 0, FTF = I. (11)

The above formula is the objective equation of the RRCSL
method for single-view clustering. By solving (11), we obtain
a robust and sparse data similarity graph with the clear cluster
structure. In the following part, we will present an efficient
optimization algorithm to solve (11).

C. Optimization Algorithm

Since ‖X −XS‖2,1, ‖S −B‖2
F , and Ls all depend on S, (8) is

a complex optimization problem. An efficient approach, aug-
mented Lagrangian multiplier (ALM) [36], can be used for
tackling (11). Consider the constrained optimization problem
minh(X)=0 f (X), the algorithm using the ALM method to solve
this problem is described in Table I. It has been demonstrated
that under some rather general conditions, Algorithm 1 con-
verges linearly to the optimal solution [37]. This property
makes the ALM method very attractive.

Let E = X − XZ, Z = S, and (11) is transformed into the
following ALM problem:

min
S

‖E‖2,1 + α‖Z − B‖2
F + λTr

(
FTLsF

)

+ μ

2

∥∥∥∥E − X + XZ + �1

μ

∥∥∥∥
2

F
+ μ

2

∥∥∥∥Z − S + �2

μ

∥∥∥∥
2

F

s.t. sij ≥ 0,
∑

j

sij = 1, diag(S) = 0, FTF = I (12)

where μ ∈ R
1×1 is a regularity coefficient, and �1 ∈ R

d×n

and �2 ∈ R
d×n are penalty parameters.

Update E: When updating E, we fix Z, S, and F. Denoting
C = X − XZ − (�1/μ), thus (12) becomes

min
E

‖E‖2,1 + μ

2
‖E − C‖2

F. (13)

The following Lemma is useful for solving this problem [38].
Lemma 1 [39]: Given a matrix W = [W1, . . . , Wn] ∈ R

m×n

and a positive scalar δ, then X∗ is the optimal solution of

min δ‖X‖2,1 + 1

2
‖X − W‖2

F (14)

and the ith column of X∗ is

X∗(:, i) =
{ ‖Wi‖2−δ

‖Wi‖ Wi, if ‖Wi‖2 > δ

0, otherwise.
(15)
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Let δ = (1/μ), and the solution of E is

E∗(:, i) =
{(

1 − 1
μ‖C(:,i)‖

)
C(:, i), if ‖C(:, i)‖2 > 1

μ

0, otherwise
(16)

where E(:, i) and C(:, i) are the ith columns of E and C,
respectively.

Update Z: When updating Z, we fix E, S, and F. Thus, (12)
becomes

min
Z

α‖Z − B‖2
F + μ

2

∥∥∥∥E − X + XZ + �1

μ

∥∥∥∥
2

F

+ μ

2

∥∥∥∥Z − S + �2

μ

∥∥∥∥
2

F
. (17)

Taking the derivation of (17) with respect to Z

min
Z

2αTr(Z − B) + μTr

(
Z − S + �2

μ

)

+ μ

2
Tr

[
2XTXZ + 2XT

(
E − X + �1

μ

)]
. (18)

Let (18) be zero and we obtain the optimal solution for Z as
follows:

Z =
[

2α
μ

B − 2XT
(

E − X + �1
μ

)
+ S − �2

μ

]

(
2α
μ

I + XTX + I
) . (19)

Update S: When updating S, we fix E, Z, and F. Thus, (12)
becomes

min
S

λTr
(
FTLsF

) + μ

2

∥∥∥∥Z − S + �2

μ

∥∥∥∥
2

F
. (20)

Let sij denote the element in S. According to the properties of
the Laplace matrix, we have the following equation for any F:

Tr
(
FTLsF

) = 1

2

∑

ij

(
‖F(i, :) − F(j, :)‖2

2sij

)
. (21)

Denoting H = Z + (�2/μ) and dij = ∑
ij ‖F(i, :) −

F(j, :)‖2
2, (20) becomes

min
S

λ

2

∑

ij

dijsij + μ

2
‖H − S‖2

F. (22)

Let hij denote the element in H. Equation (22) becomes

min
S

λ

2

∑

ij

dijsij + μ

2

∑

ij

(hij − sij)
2. (23)

Note that the solution to (23) is independent for each row, so
we can optimize each row separately

min
S

λ

2

∑

j

dijsij + μ

2

∑

j

(
hij − sij

)2
. (24)

After expanding (24), we obtain

min
S

∑

j

(
s2

ij − 2

(
hij − λ

2μ
dij

)
sij + μ

2
h2

ij

)
. (25)

For each row, (25) is equivalent to the following form further:

min
S

∥∥∥∥sj −
(

hj − λ

2μ
dj

)∥∥∥∥
2

2
(26)

which can be solved with an efficient iterative algorithm [15].

TABLE II
ALGORITHM OF SINGLE-VIEW CLUSTERING BY RRCSL METHOD

Update F: When updating F, we fix E, Z, and S. Thus, (12)
becomes

min
F

Tr
(
FTLsF

)

s.t. F ∈ R
n× k, FTF = I. (27)

The number of clusters is k. Calculating the first k minimum
eigenvalues of Ls and the optimal solution of F consists of k
eigenvectors corresponding to these eigenvalues.

Update �1, �2, and μ: In each iteration, the ALM param-
eters are updated as follows [38]:

�1 = �1 + μ(E − X + XZ)

�2 = �2 + μ(Z − S)

μ = ρμ (28)

where ρ > 1 is the update rate, and a larger ρ brings faster
convergence speed, but accompanied with poorer results. The
algorithm of single-view clustering by RRCSL method is
shown in Table II.

III. MULTIVIEW CLUSTERING BY RRCSL METHOD

In this section, the RRCSL method is extended to multiview
clustering. We will show the differences in model and the
optimization algorithm separately from the previous section.

A. Multiview Clustering Formulation

Supposing the data contain nv views, the data corresponding
to the nv views can be written as X(1), X(2), . . . , X(nv) ∈ Rd×n,
where each column corresponds to one sample, and each
row corresponds to one feature in each view. Denoting that
scalar variable w(1), w(2), . . . , w(nv) ≥ 0 are the weights
of X(1), X(2), . . . , X(nv), respectively, and the optimization
problem becomes the following formula on the basis of (11):

min
S

∥∥∥∥∥

nv∑

v=1

w(v)X(v) −
nv∑

v=1

w(v)X(v)S

∥∥∥∥∥
2,1

+ α

∥∥∥∥∥S −
nv∑

v=1

w(v)B(v)

∥∥∥∥∥

2

F

+ λTr
(
FTLsF

)

s.t. sij ≥ 0,
∑

j

sij = 1, diag(S) = 0

FTF = I,
∑

v

w(v) = 1, w > 0 (29)
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where B(v) is the initial graph of the vth view.
Compared with (11), (29) deals with the multiview data, and

it learns the weight of each view automatically. Some methods
directly average the weights of the various views [28]. This
strategy is straightforward, but it neglects the different roles of
the views. In order to solve this problem, a method is proposed
to assign the weight of the view automatically [40]. This
way is embedded in the optimization process of the RRCSL
method. Based on the algorithm of single-view clustering in
the previous section, we realized the optimal distribution of
weights of various views by adding an iterative link, which is
shown in Table III.

B. Optimization Algorithm

Let E = ∑nv
v=1 w(v)X(v) − ∑nv

v=1 w(v)X(v)Z, Z = S, then the
ALM method is applied to construct the following objective
equation based on (29):

min
S

‖E‖2,1 + α

∥∥∥∥∥Z −
nv∑

v=1

w(v)B(v)

∥∥∥∥∥

2

F

+ λTr
(
FTLsF

)

+ μ

2

∥∥∥∥∥E −
nv∑

v=1

w(v)X(v) +
nv∑

v=1

w(v)X(v)Z + �1

μ

∥∥∥∥∥

2

F

+ μ

2

∥∥∥∥Z − S + �2

μ

∥∥∥∥
2

F

s.t. sij ≥ 0,
∑

j

sij = 1, Tr(S) = 0

FTF = I,
∑

v

w(v) = 1, w > 0. (30)

Update E, Z, S, and F: When updating E, Z, S, or F, w(v) is
fixed. Equation (30) is equivalent to the optimization problem
for single-view clustering, just as (13)–(27).

Update w(v): When updating w(v), we fix E, Z, F, and S;
thus, (30) becomes

min
w(v)

α

∥∥∥∥∥Z −
nv∑

v=1

w(v)B(v)

∥∥∥∥∥

2

F

+ μ

2

∥∥∥∥∥E −
nv∑

v=1

w(v)X(v) +
nv∑

v=1

w(v)X(v)Z + �1

μ

∥∥∥∥∥

2

F

s.t.
∑

v

w(v) = 1, w > 0. (31)

To solve this difficult optimization problem, we convert
it from matrix form into the vector form [40]. We con-
vert E ∈ R

d×n and Z ∈ R
n×n into two column vectors

ê ∈ R
dn×1 and ẑ ∈ R

n2×1, respectively. Meanwhile, we com-
bine [w(1), w(2), . . . , w(nv)] into a column vector ŵ ∈ R

nv×1.
X(1), X(2), . . . , X(nv) ∈ R

d×n and B(1), B(2), . . . , B(nv) ∈ R
n×n

are also converted into two matrixes X̂ ∈ R
dn×nv and B̂ ∈

R
n2×nv . Then, (31) becomes

min
ŵ

α

∥∥∥ẑ − B̂ŵ
∥∥∥

2

2
+ μ

2

∥∥∥∥ê − X̂ŵ + X̂ẑŵ + �1

μ

∥∥∥∥
2

2
. (32)

TABLE III
ALGORITHM OF MULTIVIEW CLUSTERING BY RRCSL METHOD

In order to be more concise in form, we let l̂ = ê + (�1/μ)

and R̂ = X̂ − X̂ẑ. Then, (32) becomes

min
Ŵ

α

∥∥∥ẑ − B̂ŵ
∥∥∥

2

2
+ μ

2

∥∥∥l̂ − R̂ŵ
∥∥∥

2

2
. (33)

Spreading the first term, we have

min
ŵ

α

∥∥∥ẑ − B̂ŵ
∥∥∥

2

2

= min
ŵ

α
(

ẑT ẑ − ŵTB̂T ẑ − ẑTB̂ŵ + ŵTB̂T B̂ŵ
)

(34)

which is transformed into

min
ŵ

α
(

ŵTB̂T B̂ŵ − 2ẑTB̂ŵ
)
. (35)

Similarly, the second term becomes

min
ŵ

μ

2

(
ŵTR̂T R̂ŵ − 2l̂

T
R̂ŵ

)
. (36)

Therefore, (33) finally becomes

min
ŵ

ŵT
(
αB̂T B̂ + μ

2
R̂T R̂

)
ŵ −

(
2αẑTB̂ + μl̂

T
R̂
)

ŵ

s.t.
∑

v

w(v) = 1, w > 0. (37)

So far, we have converted (31) into the standard quadratic
programming (QP) problem. There are various existing algo-
rithms that can solve this problem effectively [15], such as the
Lagrangian method. In this way, the weight of each view is
learned adaptively.

IV. EXPERIMENTS OF SINGLE-VIEW CLUSTERING

The RRCSL method is evaluated on nine commonly used
real-world benchmark datasets. The clustering experimental
results will be compared with seven state-of-the-art clustering
methods. In addition, the robustness of the RRCSL method is
also demonstrated.

A. Dataset Descriptions

Nine commonly used real-world benchmark datasets are
employed to demonstrate the effectiveness of the proposed
RRCSL, including SRBCT [41], iris [42], Yale [43],
wine [44], glass [45], umist [46], coil20 [47], yeast [48], and
Semeion [49].

SRBCT contains 83 sets of data, with 2308 features in each
set. This is a bioinformatics dataset consisting of four classes,
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(a) (b) (c) (d)

Fig. 2. Effect of parameter on the datasets. (a) YALE. (b) GLASS. (c) WINE. (d) IRIS.

(a) (b) (c) (d)

Fig. 3. Convergence analysis on datasets. (a) YALE. (b) GLASS. (c) WINE. (d) IRIS.

TABLE IV
SINGLE-VIEW CLUSTERING RESULT IN TERMS OF ACCURACY

corresponding to four subtypes of the small round blue cell
tumor.

Iris contains 150 sets of data from three classes, and four
features (sepal length, sepal length, petal length, and petal
width) are used for clustering.

The Yale dataset contains 165 face images from 15 classes.
The resolution of each image is 16 by 16.

The Wine dataset contains 178 sets of data from 3 classes,
and 13 features are used for clustering.

The Glass Identification dataset contains 214 sets of data
from seven classes, and nine features are used for clustering.

UMIST is another face dataset from 20 classes, containing
575 face images.

The Coil20 dataset contains 1440 images from 20 classes.
These 20 classes correspond to 20 objects, and the resolution
of each image is 32 by 32.

The Yeast dataset contains 1484 sets of data from ten
classes, and 1470 features are used for clustering.

The Semeion handwritten digit dataset contains 1593 images
from ten classes. The resolution of each image is 16 by 16.

B. Experiments Setup

We compared our clustering methods with seven clustering
methods, including K-means, NMF [50] methods, normalized

cut (NCut) [51], CAN [13], CLR [14], SSR [15], and
K-multiple-means (KMMs) [52]. The comparison methods are
all set by default. As for our clustering method, the initial sim-
ilarity graph is generated by Nie et al. [14]. A heuristic way
is employed to determine the value of λ: at the beginning, let
λ be a small value like 1e − 4; then, we calculate whether the
number of zero eigenvalues of Ls is equal to k in each iteration.
The controlling parameter α is set as 0.01. Because the learned
graph S has a clear structure, clustering results can be obtained
by directly dividing S into k connected components and each
of these components corresponds to a class.

C. Performance

After the same normalization processing of the data from
the nine datasets, the RRCSL method and seven comparison
algorithms are applied, respectively, to carry out clustering
experiments. Two widely used clustering performance mea-
sures are adopted to evaluate the clustering results, namely,
accuracy (ACC) [53] and normalized mutual information
(NMI) [15], [54]. In experiments, the greater the value of
ACC and NMI, the better the clustering result. The perfor-
mances are shown in Tables IV and V (bold indicates the best).
K-means, NMF, and NCut are widely used clustering methods,
and KMM is a novel clustering algorithm improved from
K-means. Compared with them, our method has significant

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on May 02,2021 at 14:59:11 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: RRCSL 7

TABLE V
SINGLE-VIEW CLUSTERING RESULT IN TERMS OF NMI

(a)

(b)

Fig. 4. Visualization results of (a) S for Iris dataset and (b) S for Yale dataset.

performance advantages. As representative graph-based clus-
tering methods, CAN, CLR, and SSR achieved good results
in clustering experiments. But we can see that RRCSL outper-
forms these methods in all the experiments. This is because
the RRCSL method has stronger ability on data representation
compared with CAN and CLR, and it avoids the problem of
SSR that the similarity graph is not unique. While improving
the quality of similarity graph, this method is more robust than
others. The results of the experiments demonstrate the supe-
riority of the proposed approach. Using the Iris dataset and

(a) (b)

(c) (d)

Fig. 5. Two-Moon synthetic datasets. (a) Original two-moon. (b) Noise
percentage is 0.1. (c) Noise percentage is 0.2. (d) Noise percentage is 0.3.

Yale dataset as examples, we show the visualization results of
data similarity graph S, as shown in Fig. 4.

We also investigate the parameter sensitivity of the proposed
method. Taking the four datasets of Yale, Glass, Yeast, and
Wine as examples, we let the variable parameter α fluctu-
ate within a large range of 0.001–10 and calculate the ACC
as results. It can be observed that the performance of the
RRCSL method is very stable as shown in Fig. 2. Meanwhile,
the convergence curves of the proposed algorithm are shown
in Fig. 3.

D. Robustness to Noises and Outliers

The robustness of RRCSL is verified by experiments on
“Two-Moon” synthetic dataset and Yale face dataset. For Two-
Moon dataset, there are two clusters of data distributed in the
moon shape. Each cluster has a volume of 100 samples and
the noise percentage is set to be from 0.1 to 0.3 as shown
in Fig. 5. In this figure, we set the color of the two clusters
to be red and blue, respectively. Table VI shows the cluster-
ing results, and it can be seen that the RRCSL method is
less affected by noise. It is particularly noteworthy that our
method achieves 100% clustering accuracy when the noise
percentage is 0.1. Meanwhile, we also conduct experiments on
the occluded Yale face dataset [55]. On each 16-by-16-pixel
image, a part is randomly selected for occlusion processing
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TABLE VI
ACC/NMI OF THE ROBUSTNESS EXPERIMENTS ON TWO-MOON DATASET

Fig. 6. Ablation experiments for single-view clustering.

(a)

(b)

(c)

Fig. 7. Occluded Yale datasets. (a) Randomly add 2×2 occlusion.
(b) Randomly add 3×3 occlusion. (c) Randomly add 4×4 occlusion.

(as shown in Fig. 7). Table VII summarizes the results for all
methods on the occluded Yale dataset. Obviously, the RRCSL
method has better robustness than others.

E. Ablation Experiments

In order to analyze the influence of components in the
proposed method on clustering results, ablation experiments
were conducted. The ablation experiments consist of two parts.
First, to investigate the impact of the initial similarity graph,

TABLE VII
ACC/NMI OF THE ROBUSTNESS EXPERIMENTS ON YALE DATASET

we remove ‖S−B‖2
F and replace it with ‖S‖2

F , which is used to
prevent S from becoming the identity matrix. Therefore, (11)
becomes

min
S,F

‖X − XS‖2,1 + α‖S‖2
F + λTr

(
FTLsF

)

s.t. sij ≥ 0,
∑

j

sij = 1, FTF = I (38)

and we name it RRCSL-Ablation-v1.
Besides the initial similarity graph, how much influence the

Laplacian rank constraint has on the proposed RRCSL method
is also an issue worth exploring. So we remove the Laplacian
rank constraint and use K-means as the postprocessing to
obtain the clustering result from the similarity graph, just like
the traditional spectral clustering. Therefore, (11) becomes

min
S

‖X − XS‖2,1 + α‖S − B‖2
F

s.t. sij ≥ 0,
∑

j

sij = 1 (39)

which is called RRCSL-Ablation-v2.
The optimizations and algorithms of RRCSL-Ablation-v1

and RRCSL-Ablation-v2 are similar to those in Section II,
which are listed in Appendices A and B. As shown in Fig. 6,
if the similarity graph is not limited to the neighborhood of
the initial similarity graph B, the accuracy of clustering will
decrease. The reason is that there are multiple linear combina-
tions of S for the same X. By comparison, using K-means as
postprocessing instead of the rank constraint has some minor
impact on clustering. But considering that K-means is unsta-
ble, it is effective and necessary to add the Laplacian rank
constraint into the proposed method and make the learned
graph have a clear structure.

V. EXPERIMENTS OF MULTIVIEW CLUSTERING

In this section, we evaluate the effectiveness of RRCSL on
multiview clustering.

A. Dataset Descriptions

The MSRC-v1 [56] dataset contains 240 images from eight
classes, and we extract four visual features (CMT, LBP, GIST,
and CENT) for clustering.

The Caltech101-7 [57] dataset contains 101 categories
of object recognition images. Following Wang et al. [40],
we select the widely used seven classes (Dolla-Bill, Face,
Garfild, Motorbikes, Snoopy, Stop-Sign, and WindsorChair),
and obtain 1474 images.
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Fig. 8. Ablation experiments for multiview clustering.

TABLE VIII
ACC OF THE ROBUSTNESS MULTIVIEW CLUSTERING EXPERIMENTS

The Handwritten [58] dataset contains 2000 images from
ten classes, and six kinds of features (FOU, FAC, KAR, PIX
MOR, and ZER) are employed in the experiment.

YaleB [43] is a challenging dataset due to the large varia-
tion of luminance, containing three kinds of features. As done
in [59], we used the first ten classes.

B. Experimental Setup

Eight state-of-the-art multiview clustering methods are
taken as competitors, including spectral clustering [60] (we
run SC on all single views and the best results are set as
the baseline), co-trained spectral clustering (Co-train) [27],
co-regularized spectral clustering (Co-reg) [28], autoweighted
multiple graph learning (AMGL) [61], exclusivity-consistency
regularized multiview subspace clustering (ECMSC) [62],
multiview learning with adaptive neighbors (MLANs) [63],
self-weighted multiview clustering (SwMC) [64], and adap-
tively weighted procrustes (AWPs) [26]. The parameter setting
is the same as that in Section IV. The weight w(v) is initialized
as w(1), w(2), . . . , w(nv) = (1/nv). Our algorithm requires the
weighted sum of each view matrix, but the dimension of each
view is usually not the same. In order to solve this problem,
we fill the smaller view with 0 in the preprocessing stage.

C. Performance

Tables VIII and IX show the ACC and NMI of compari-
son experiments, respectively, (bold indicates the best). SC,
Co-train, and Co-reg neglect the different roles of the views.
In contrast, our strategy of adaptively distributing weights
of various views makes the RRCSL method perform better.
Meanwhile, compared with self-weighted multiview cluster-
ing methods such as SwMC, our method can construct data
similarity graph with higher quality and has better robustness

TABLE IX
NMI OF THE ROBUSTNESS MULTIVIEW CLUSTERING EXPERIMENTS

TABLE X
ACC/NMI OF THE ROBUSTNESS EXPERIMENTS ON YALEB DATASET

against noise and outliers. All these ensure that the RRCSL
method achieves the best performance on all datasets. Our
proposed method is applicable to both single-view clustering
and multiview clustering, which fully illustrates its superiority
and extendibility.

D. Robustness to Noises and Outliers

To demonstrate the robustness of our RRCSL method for
multiview clustering, we conduct experiments on the YaleB
dataset. For all views, different proportions of data (1%, 5%,
and 10%) were randomly selected to be 0. Table X shows the
clustering results, and it can be seen that RRCSL outperforms
these methods in all the experiments. Our method maintains
excellent robustness in multiview clustering.

E. Ablation Experiments

For multiview clustering, we also conducted ablation exper-
iments to analyze the influence of components in the proposed
RRCSL method. Using the same settings as in Section IV, we
analyze the influence of initial similarity graph and Laplacian
rank constraint on multiview clustering. As with single-view
clustering, the clustering results show that these components
are necessary. In addition, to verify that our strategy of adap-
tively distributing weights of various views is effective, we
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TABLE XI
ALGORITHM OF SINGLE-VIEW CLUSTERING BY RRCSL-ABLATION-V1

TABLE XII
ALGORITHM OF SINGLE-VIEW CLUSTERING BY RRCSL-ABLATION-V2

remove the step of updating the weights. This clustering
method with averaging the weights is called RRCSL-Ablation-
v3. As shown in Fig. 8, the complete version of the RRCSL
method performs the best. The experiment demonstrates that
if different views are treated equally, the clustering will be
affected by the low-performing views and the accuracy of the
results will be reduced. Our adaptive distribution strategy of
weights solves this problem effectively and each component
is reasonable.

VI. CONCLUSION

In this article, we proposed a new graph-based RRCSL
framework for both single-view and multiview clustering. In
our method, the sparse representation with a rank constraint is
adopted to learn the desired similarity graph, and a predefined
graph is used to guide the graph learning procedure. Therefore,
the obtained graph has more capability on data represen-
tation and relationship preservation. Besides, L2,1-norm is
combined to reduce the impact of data noises and outliers.
For multiview clustering, our adaptive distribution strategy of
weights solves the problem that clustering is affected by the
low-performing views. Extensive experiments on real-world
datasets have demonstrated the superiority and robustness of
the proposed framework.

APPENDIX A
OPTIMIZATIONS AND ALGORITHMS OF

RRCSL-ABLATION-V1

Let E = X − XZ, Z = S, and (38) is transformed into the
following ALM problem:

min
S

‖E‖2,1 + α‖Z‖2
F + λTr

(
FTLsF

)

+ μ

2

∥∥∥∥E − X + XZ + �1

μ

∥∥∥∥
2

F
+ μ

2

∥∥∥∥Z − S + �2

μ

∥∥∥∥
2

F

s.t. sij ≥ 0,
∑

j

sij = 1, FTF = I (40)

where μ ∈ R
1×1 is a regularity coefficient, and �1 ∈ R

d×n

and �2 ∈ R
d×n are penalty parameters.

Update E, S, and F: When updating E, S, or F, (40)
is equivalent to the optimization problem in Section II, just
as (13)–(16) and (20)–(27).

Update Z: When updating Z, we fix E, S, and F. Thus, (40)
becomes

min
Z

α‖Z‖2
F + μ

2

∥∥∥∥E − X + XZ + �1

μ

∥∥∥∥
2

F

+ μ

2

∥∥∥∥Z − S + �2

μ

∥∥∥∥
2

F
. (41)

Taking the derivation of (17) with respect to Z

min
Z

2αTrZ + μTr

(
Z − S + �2

μ

)

+ μ

2
Tr

[
2XTXZ + 2XT

(
E − X + �1

μ

)]
. (42)

Let (42) be zero and we obtain the optimal solution for Z as
follows:

Z =
[
−2XT

(
E − X + �1

μ

)
+ S − �2

μ

]

(
2α
μ

I + XTX + I
) . (43)

See Table XI.

APPENDIX B
OPTIMIZATIONS AND ALGORITHMS OF

RRCSL-ABLATION-V2

Let E = X − XZ, Z = S, and (39) is transformed into the
following ALM problem:

min
S

‖E‖2,1 + α‖Z − B‖2
F + μ

2

∥∥∥∥Z − S + �2

μ

∥∥∥∥
2

F

+ μ

2

∥∥∥∥E − X + XZ + �1

μ

∥∥∥∥
2

F

s.t. sij ≥ 0,
∑

j

sij = 1 (44)

where μ ∈ R
1×1 is a regularity coefficient, and �1 ∈ R

d×n

and �2 ∈ R
d×n are penalty parameters.

When updating E, Z, or S, (44) is equivalent in Section II,
just as (13)–(26). The objective value of (44) decreases in each
iteration. When (44) converges, we perform k-means with S
to obtain the final clustering result.

See Table XII.
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